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The scattering of surface waves by various bottom irregularities is a classical problem 
in wave hydrodynamics. However, obstacles with shadow zones, where the shape of the irregu- 
larity is a multiple-valued function of the horizontal coordinates, have not been considered 
to date. For our investigation we have chosen the simplest bottom irregularities shape: a 
step with an overhang, and a partially capped trench. We consider the plane potential wave 
motion of a ideal incompressible fluid in the linear problem. We investigate the influence 
of the bottom geometry on the characteristics of the reflected and transmitted waves and on 
the kinetic energy of the fluid in the pocket formed in the bottom. To solve the method 
numerically, we use the method of integral matching along vertical segments partitioning the 
entire flow region into rectangular subregions. This method has been used to investigate the 
action of waves on an underwater rectangular obstacle [i] and in application to an ordinary 
rectangular trench [2, 3], in one case [3] where a denser fluid layer is situated inside the 
trench. The propagation of waves over a step has also been investigated [4] using the conven- 
tional matching technique. 

i. Let a fluid occupy a domain S bounded by a free surface and a rigid impenetrable 
bottom. Inthe case of a step, HI is the depth of the fluid to the left of it, H 2 is the 
depth to the right (H 2 > HI), and s is the length of the horizontal, rigid, infinitely thin 
overhang AB (Fig. la). The coordinate system is chosen so that the x axis coincides with 
the unperturbed level of the free surface, and y passes through the end of the overhang 
(point B) and is directed upward. The motion of the ~luid is assumed to be potential every- 
where except at corner points, in the neighborhood of which the velocity goes to infinity of 
the order r(8-~)/(2~-8) (r is the distance from the corner point, and 8 is the angle for a 
rigid body). 

The incident waves propagate in the positive x direction from the shallow-water to the 
deep-water part of the fluid and are described by the velocity potential ~0(x, y, t) = 

iagchkl(y + H~) exp(iklx);' a and o are the amplitude and fre- ~0(x, y) exp(--iot), where ~o = ~ehklH ~ 

quency of the wave, and the wave number k I is determined from the equation 

~ = gkl th  klH* (i.i) 

(g is the acceleration of gravity). Here and in all other expressions containing the factor 
exp(-iot), only the real part has physical significance. 

We consider steady-state waves and seek the velocity potential of the total perturbed 
flow in the form r y, t) = ~(x, y)exp(-iot). In order to determine the function ~ (x, t), 
it is necessary to solve the problem 

h ~ : O  (x, y ~ S ) ,  
O2~--gO~/Oy : 0 (y ~ 0), O~/On = 0 (on the bottom contour) (1.2) 

(n is the normal to the bottom line). The reflected and transmitted waves must satisfy the 
radiation conditions in the limit Ixl + ~. 

The problem (1.2) is solved by a matching technique similar to the one used in [3]. 
The region S is partitioned into three rectangular subregions: S I = [-~ < x < 0, -H I ! Y ! 
0]; S 2 = [0 < x < ~, -H 2 ! Y ! 0]; S s = [-s < x < 0, -H 2 ! Y ! -HI]; in the j-th subregion 
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Fig. i 

(j = i, 2, 3) the function ~(x, y) is denoted by ~j(x, y). Since the motion of the fluid is 
continuous in S, conditions are established at the-boudnaries of the subregions Sj for 
matching of the pressure and the horizontal velocity along the vertical line x = 0; it follows 
from these conditions that 

c h = ~ ,  Oeh/Ox --_ 
= a~21az (--111 < y <~ 0), 

% = ~ ,  a~/ax = 
=a~daz (-//~<y<_/z~). (1.3) 

Invoking the separation of variables, we seek the functions #j 
e i g e n f u n c t i o n s  of  t he  c o r r e s p o n d i n g  b o u n d a r y - v a l u e  p rob lems:  

% = % + A o exp (-- ik~x) Y~ (y) + ~ A~ exp (k~x) Y~. (y), 

q~2 = Bo exp (ik~x) Y~ (g) + ~ B,~ exp (-- k2,~x) Y2~ (Y), 

% ~ Co + ~ C,~ cos ~,~ (y + H1) ch 13m (x + l). 

in the form of expansions in 

(1.4) 

Here 8m = m~/h, h = H 2 - Hz, and kln (n = i, 2 .... ) are the roots of the equation 

~ = - - g k t g k H ~ .  (1.5) 

The quantities k 2 and k2n are determined from Eqs. (i.i) and (1.5) with H I replaced by H 2. 
The eigenfunctions Yz' Yzn and Y2, Y2n are orthogonal and are normalized as follows: 

0 
ch kl(y + H 0 y 

r ~  (y) . . . .  ] / -~ , A~ = ch  2 k~ (y + H~) dy, 
--H i 

Y ~  (y) = co~ k. ,  (y + ~ )  y cos ~ kl.  (y + tt~) dg, 
--H l 

0 oh k~ (y + n,) [ 
Y~ (y) ~r~- , A~ = ~ ch ~k,(y + H~)dy, 

g ~  --t/2 
0 

Y2n (y) 
--H 2 

The reduction method is used to replace the infinite series in Eqs. (1.4) by finite 
sums with N and M terms, respectively. The unknown complex constants A0, B0 and An, Bn, C m 

(n = 1 ..... N; m = i ..... M) are determined from the matching conditions (1.3), which are 
satisfied in the integral sense: 

0 --HI -- 

i,/r 0 .  = aj ~ 1  Y2 dy + "*J ~(~3~ Y2 d~l, 
--Hf --H~ 
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0 _ --Hf - 

"7 kv~B,~ = ~ --2,~ dy + Y,,~ dy (n = i . . . . .  N), 
--ttf --Hu 

0 o 0 

Ao--= j' -~2Yl dY - -  ; q%Yl dy, A n =  ~ "~Yl~ dy ( n =  t . . . . .  N), 
--H i --H~ --H i 

- -H i 

Cm = h ch ~,~l qD 2 cos [3m (y + H~) dy (m = i . . . . .  M) 
--H 2 

(1.6) 

[~j denotes the finite sums in the corresponding series (1.4) of the function #j(0, y)]. 

The integrals in Eqs. (1.6) are expressed in terms of elementary functions. The linear 
system (1.6) of 2 + 2N + M equations is conveniently reduced to a system of 2 + 2N equations 
by eliminating the constants C m. The resulting system is solved numerically by the Gaussian 

method. 

The most interesting wave diffraction characteristics are the reflection coefficient R 
and the transmission coefficient T, which are equal to the ratios of the amplitudes of the 
reflected and transmitted waves, respectively, to the amplitude of the incident wave and, 
according to Eq. (1.4), are given by the expressions 

0 ch k~H 1 (~ ch k2H 2 
.~ = agVAl--~[A~ T= ~-g ~--~ [Bob 

We know from the general theory of the propagation of linear plane waves over a rough bottom 
[5] that the following relation holds by the energy conservation law for a fluid whose depths 
tends to constant values H 2 and H l in the limit x +_+~: 

S (k~H2) T2 = 1, ( 1 . 7 )  R2 + s (klH1) 

where  S ( z )  = z ( 1  - t a n h 2 z )  + t a n h z .  

An a p p r o x i m a t e  s o l u t i o n  o f  t h e  s y s t e m  ( 1 . 6 )  can  be o b t a i n e d  f o r  a p l a i n  s t e p  (s  = 0) i f  
t h e  i n f i n i t e  sums in  t h e  r e p r e s e n t a t i o n  ( 1 . 4 ) ,  i . e . ,  n o n p r o p a g a t i n g  w a v e s ,  a r e  d i s r e g a r d e d  
[ 2 ] .  I t  i s  a s i m p l e  m a t t e r  t o  w r i t e  o u t  t h e  s o l u t i o n  o f  t h i s  p r o b l e m  and t o  d e t e r m i n e  t h e  

coefficients 

2klGA 1 ch k~H 2 
H = Ikla2--k2A'A21 T =  ( 1 . 8 )  

klG ~ + k2AiA ~ ' klG 2 + k2A1A 2 ' 

O=k shk h/(k --kD 

In the linear wave approximation (kiH I + 0, k2H 2 § 0) Eqs. (1.8) give the well-known 

result R = (V~2/HI - i) (i + V~2/HI), T = 2/(1 + /Ha/HI). The propagation of waves over an 

infinite step is investigated in detail in [6]. 

The interesting characteristic of the wave motion in the case of a step with a water poc- 
ket (s # 0) is the kinetic energy of the fluid contained in the pocket. For the rectangular 
subregion S 3 the kinetic energy, averaged over the wave period and normalized to the length h, 

is given by the equation 

\_Hi m = l  

(p is the density of the fluid, the angle brackets denote time averaging, and the integration 
is carried out at x = 0). The kinetic energy of the incidence wave, referred to its wave- 

length ~ = 2~/ki, is E w = pga2/4. We denote E = Ep/E w. 
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TABLE i 

N M 

10 40 
i5 30 
15 40 
15 40 

R 
0~5" 

o,a 

o,;, 

\ 04 
!yO~ 

~ o 6~ H, la 

\ Z\~ 
o,1 o,2 H,/~; 

Fig. 2 

H,/~. 
0,2 0,05 0 , i  

R I E ' i 0 ~  R 

0,460i 3,333 0,285i 
0,4603 3,372 0,2858 
0,4603 t3,387 0,2858 
0,4595 I 4,540 0,2826 

I 

E , i 0  ~ 

i,866 
1,877 
f,884 
2,5t0 

0,i5 

R 

0,t519 
0,t534 
0,t535 
0,1501 

E . t 0  ~ 

0,683 
0,695 
0,699 
0,940 

R 

0,0797 
0,08i6 
0,08t7 
0,0793 

E,10 2 

0,251 
0,259 
0,26t 
0,346 

The results of numerical calculations of E and the specific kinetic energy E for H2/H I = 
!0 are shown in Table 1 and in Fig. 2. Table 1 illustrates the convergence of the numerical 
values as a function of the number terms retained in Eqs. (1.4) for ~/H I = I0; the top three 
rows correspond to the case in which the wave is incident on the step from the right, i.e., 
from the deep-water to the shallow-water part of the fluid (forward step); the last row 
corresponds to the original statement of the problem (backward step). It has been shown [6] 
that the reflection coefficients coincide for forward and backward steps when s = 0. In the 
given calculations this condition is valid within relative error limits of 2% if both steps 
have the same value of s The reflection coefficient is not as sensitive to variations of 
N and M as the kinetic energy. Figures 2a and 2b show R and E, respectively, for s I = 0, 
i, 5 (curves 1-3). The light circles and triangles give the values for a forward step, and 
the dark symbols give the values for a backward step. The calculations are carried out for 
N = 15 and M = 40. The dashed curve corresponds to the approximation (1.8), which is obvious- 
ly unacceptable for the given large difference in depths. The reflection coefficient and the 
kinetic energy for the indicated parameters are almost invariant with a further increase in 
the dimensions of the water pocket. The presence of this pocket has scarcely any influence 
on the reflection coefficient for H2/H l ! 2. As H 2 is increased, the maximum specific kinetic 
energy for fixed values of s and H I increases at first to approximately H2/H 1% i0 and then 
begins to decrease. 

2. The flow diagram for wave propagation over a trench is shown in Fig. lb. The depth 
of the fluid outside the trench is HI, the depth in the trench is H2, the length of its open 
pore is L, the widths of the left and right water pockets are s and s respectively, and 
the total width of the trench is L + s + s The vertical axis passes through the left end 
of the open part of the trench. The incident wave travels from left to right. The flow 
region S is partitioned into five rectangular subregions: S l = [-~ < x ~ 0, -H I ! y j 0]; 
S 2 = [0 ! x < L, -H 2 ! Y ! 0]; S 3 = [L < x < ~, -HI ! Y < 0]; S 4 = [-s < x < 0, -H~ j y < 

--Hi]; S 5 = [L < x < L < L2"-H 2 i Y J -HI]; solutions are so]ght in each subregion in a form - 
analogous to Eqs. (i.4): 

% = % + n o exp (-- ~kix) Y1 (Y) + ~ A~ exp ( k ~ )  Y ~  (U), 

% = [D O exp (ik~x) + F o exp ( - -  ~k~x)] Y~ (y) + 
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TABLE 2 

H~/~ 
N 0,05 0,i 0,15 

5 
10 
t5 

0,7728 
0,7728 
0,7726 
0,7725 

E 

0,26i2 
0,2634 
0,2636 

T 

0,9845 
0,0827 
0,9823 
0,9802 

0,4t25 
0,4!48 
0,4t48 

0,9987 I 0,2734 0,9981 0,2740 
0,9979 0,2738 
0,997i -- 

I T "------~0 "2 E 

0,9993 0,1357 
0,9995 0,t359 
0,9995 0,t357 
0,9997 

I 
Fig. 3 

+ ~ [D,~ exp (k~nx) + Fn exp (-- k2nx)] Y:n (g), 

(P4 =- Co + ~ C,n cos ~ (y + H,) ch ~,n (x + 10, 

q)~ = G O + ~ Gm cos ~m (Y + H1) ch ~n (L + I~ -- x). 
m = l  (2 .1)  

The solutions are matched at the vertical segments x = 0, x = L(-H= ! Y < 0). By analogy with 
Sec. i, the unknown constants in the representation of the solution for $4 and Ss are expressed 
in terms of the constants of the functions $i, $2, and $3. The original problem is ulti- 
mately reduced to the solution of a system of linear algebraic equations of order 4 + 4N. 
The convergence of the method for various numbers N is illustrated in Table i from [2] in the 
example of calculations of the reflection and transmission coefficients for a plain trench 
(s = s = 0) for H2/H l = 3 and L/HI = i0. These results are fully corroborated in the pre- 
sent study. 

An alternative method for the analysis of wave diffraction by a trench is given in [7]. 
A horizontal line segment separates the flow region two subregions: the trench proper and the 
subregion of constant depth. The solutions are matched at this segment by the collocation 
method. In the case of a partially capped trench, however, we run into the problem of the 
stability of the numerical solution for certain parameters of the motion, because the flow 
has singularities at the corner points (see Sec. I), which are not essential in integral 
matching. The error of calculation of the transmission coefficient and energy for several 
values of N and HI/% is shown in Table 2 for H2/H l = 7.625, L/HI = 10.59, and s = ~2 = 0; 
the last row of the table gives data obtained in [7] for the transmission coefficient when 
the maximum number of collocation points is 50. We see that the integral method already 
yields satisfactory results for N = i0. 

The kinetic energy of the fluid in the trench, averaged over the wave period and norma- 
lized to the length of the "slot" L, is determined by analogy with [8]: 
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The integration is carried out for y = -HI. A detailed investigation of the specific kine- 
tic energy E for a plain trench [8] shows that it depends strongly both on the characteristics 
of the incident wave and on the geometry of the trench. 

Several approximate methods are available for analyzing wave diffraction by a plain 
trench. The rejection of nonpropagating waves in the expansions (2.1) gives the following 
expressions for the reflection and transmission coefficients [2]: 

R s --- ~ / ( 1  + a ) ,  T 2 = 1 / ( 1  + a ) ,  ( 2 . 2 )  

a = [(72 - -  i)2/472] s i n2k~g ,  ? = kIG2/k~A1A2. 

L e t t i n g  k l H  1 ~ 0 a n d  kzH 2 § O, we o b t a i n  t h e  l o n g - w a v e l e n g t h  a p p r o x i m a t i o n  [ 2 ,  9 ]  f r o m  E q s .  
(2.2): 

B = ( ] i r H - - ~  - -  ] /"~JH2) s i n  O/d, T = 2/d, ( 2 . 3 )  

0 = eL/ 'WgH ~, d = [4 cos 2 0 + ( ] / H 2 / H ~  + ]/H~/H2) ~ sin ~ 0 ]~/% 

A more accurate long-wavelength solution is given in [i0], where the unknown characteristics 
are expressed in terms of a single unknown parameter, which is determined numerically. The 
various approximations have been analyzed and compared with the complete solution in [2], 
where it is shown, in particular, that the approximation (2.2) gives sufficiently accurate 
results for relatively small differences in the two depths. 

In the small roughness approximation [(H 2 - HI)/H l << i], according to [ii], 

R = 2kI (H~ - -  H I )  l sin klL ] 
2klH I + sh 2kil l  1 7 

d [ 2 - Lk? ]' 
T 

= 1 / ~ [  + L ~2klH1 -t- sh 2klH 1J " 

The energy conservation law (1.7), which has the form R 2 + T 2 = i for the invstigated flow, 
is not satisfied here. It has been shown [12] in the example of problems of surface wave 
generation in a fluid with a rough bottom that the small roughness approximation is appli- 
cable only for H2/H I ! 1.2. 
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The dependence of the transmission and reflection coefficients on the wavelength of the 
incident wave has been investigated in detail for a plain trench [2, 7, 8]. The interesting 
feature of these dependencesis the existence of so-called wave "transparency" (transmission) 
windows, i.e., discrete values of I at which the reflection coefficient becomes very small, 
and the transmission coefficient is close to unity. For the long-wavelength approximation 

2L 
(2.3) this effect occurs at ~ =-~- ~ (u = i, 2 .... ). 

The results of numerical calculations of the transmission coefficient for a slotted 
(partially capped on both sides) trench are given in Fig. 3 for H= = L = 15Hz, N = 20, and 
M = 40; curves 1-3 correspond to the following cases: i) s = s = 0; 2) s = 0, s = 10Hz; 
3) 4 z = s = 10Hi. For 4 z = 10H I and s = 0 the values of T coincide with curve 2. Curve 4 
represents the approximate solution (2.2). In the presence of the water sockets S 4 and S s 
the local minima of the reflection coefficient are smaller than in the case a plain trench, 
and the positions of the extrema of curves 2 and 3 are shifted very slightly toward higher 
frequencies. This behavior can be explained on the basis of the results of [13], in which it 
is shown that the natural frequencies of any rectangular region with the same opening L in 
the upper cap are slightly higher than the natural frequencies of a rectangular region of 
width L fully open at the top. 

Figure 4 shows the variations of the minimum of the transmission coefficient Tm(a) and 
its position (HI/I) m (b) as functions of the depth of the trench H 2 for various values of L, 
~i, and s The groups of curves 1-4 correspond to L/H z = 5, i0, 15, 20. In each group, 
the solid curve is given for 4 z = 42 = 0, the dashed curve for s = s = HI, and the dot- 
dashed curve for 41 = 42 = 5H 1. The dotted curve corresponds to the long-wave approximation 
(2.3), for which 

T~ = 2 ]/IT~H2/(H ~ + H~), ( t t / ~ m  = V_~H2~L .  ( 2 . 4 )  

We see that one of the governing parameters for wave propagation over a trench is the length 
of its open part and that the greater this length, the greater is the range of depths H 2 for 
which Eqs. (2.4) are valid. Beginning with a certain depth H 2 (which increases with L), a 
further increase in the depth of the trench has scarcely any effect on the characteristics of 
the wave motion. The influence of the water pockets is very weak for relatively small 
lengths L (L/HI < 5) and increases slightly with L. The maximum decrease of T m is not 
very appreciable-in this case and is already attained at s s % 5HI. A further increase 
in s or 42 has little influence on the wave motion. The transmission coefficient becomes 
equal to zero in the limit L, H 2 + ~, which corresponds to an infinite step [6]. 

The variation of the specific kinetic energy trapped in the trench is shown in Fig. 5 
for the same values of the parameters as in Fig. 3. Curves 1-3 are analogous to those in 
Fig. 3, and curve 4 corresponds to s = 10Hz and 42 = 0. We note that the distribution of E 
depends very slightly on the parameters s and s As remarked previously [8], the function 
E has local maxima near the transparency windows. The occurrence of these maxima indicates 
the resonance response of the trench to the incidence of waves having a certain wavelength. 

The author thanks S. V. Sukhinin for discussing the results of this work. 

690 



LITERATURE CITED 

I. V. S. Ermakov, I. S. Nudner, and L. So Nudner, "Influence of waves on a rectangular 
obstacle submerged in a fluid," Vod. Resursy, No. 4 (1978). 

2. J. T. Kirby and R. A. Dalrymple, "Propagation of obliquely incident water waves over a 
trench," J. Fluid Mech., 133 (1983). 

3. F. C. K. Ting and F. Raichlen, "Wave interaction with rectangular trench in density- 
stratified fluid," J. Waterway Port Coastal Ocean Eng., 114, No. 5 (1988). 

4. G. V. Simakov, I. S. Nudner, and V. V. Belov, "Investigations of wave propagation over 
underwater obstacles," in: Hydraulic Engineering Installations [in Russian] (inter- 
university collection), DVPI, Vladivostok (1985). 

5. J. V. Wehausen and E. V. Laitone, "Surface waves," in: Handbuch der Physik, Vol. 9: 
Stromungsmechanik III, Berlin (1960). 

6. J. N. Newman, "Propagation of water waves over an infinite step," J. Fluid Mech., 2~3, 
Part 2 (1965). 

7. J.-J. Lee and R. M. Ayer, "Wave propagation over a rectangular trench," J. Fluid Mech., 
110 (1981). 

8. F. C. K. Ting and F. Raichlen, "Wave interaction with a rectangular trench," J. Water- 
way Port Coastal Ocean Eng., i! 2, No. 3 (1986). 

9. M. V. Babii and L. V. Cherkesov, "Influence of an underwater obstacle on the deformation 
of long waves," in: Ocean Hydrophysical Research [in Russian], No. 2, Mor. Gidrofiz. 
Inst. Akad. Nauk UkrSSR (1973). 

i0. J. W. Miles, "Surface-wave diffraction by a trench," J. Fluid Mech., 115 (1982). 
ii. C. C. Mei, "Weak reflection of water waves by bottom obstacles," Proc. ASCE J. Eng. 

Mech. Div., 95, No. 1 (1969). 
12. B. E. Protopopov and I. V. Sturova, "Generation of plane surface waves in the presence 

of small bottom roughness," Zh. Prikl. Mekh. Tekh. Fiz., No. i (1989). 
13. D. W. Fox and J. R. Kuttler, "Sloshing frequencies," Z. Angew. Math. Phys., 3~, No. 5 

(1983). 

691 


